Intensity of bands of the C=C stretching modes in the IR spectra and conjugation in silylacetylenes

A. N. Egorochkin, ** S. E. Skobeleva, T. G. Mushtina, and E. T. Bogoradovsky

^aG. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 ul. Tropinina, 603600 Nizhnii Novgorod, Russian Federation.

Fax: 007 (831 2) 66 1497. E-mail: imoc@infotel.msk.su

bSaint Petersburg State Technological Institute,

49 Zagorodnyi proezd, 198013 St. Petersburg, Russian Federation.

Fax: 007 (812) 110 6285

A comparative study of the integrated extinction coefficients (A) of the C = C stretching bands in the IR spectra of acetylene derivatives $Me_3SiC = CR$, HC = CR, and $Me_3CC = CR$ was carried out. The resonance interactions of substituents with a triple bond are the main cause of the changes in the values of A. The total resonance effect of the Me_3Si fragment involves both acceptor (d,π -conjugation) and donor (σ,π -conjugation) components; d,π -conjugation dominates in the silylacetylenes studied. The σ_R^0 resonance constant of the Me_3Si substituent in compounds $Me_3SiC = CR$ is 0.17 ± 0.02 .

Key words: acetylene, derivatives, silylacetylenes; integrated extinction coefficient; $d_{,\pi}$ -conjugation; $\sigma_{,\pi}$ -conjugation.

According to current concepts, $^{1-6}$ the Alk₃M substituent in compounds of group IV elements Alk₃MR_{π} (M = Si, Ge, Sn, and Pb; R_{π} is phenyl, vinyl, ethynyl, furyl, thienyl, and the like) is both a resonance acceptor of the -M-type and a resonance donor of the +M-type⁷ with respect to the reaction (indicator) center R_{π}. The acceptor properties (d, π -conjugation) of the Alk₃M fragment are due to the joint effect of the vacant nd-orbitals of the M atom and antibonding σ *-orbitals of the M-C bonds, whereas the donor properties (σ , π -conjugation) are due to mixing of the σ -orbitals of the M-C bonds with the π -orbitals of R_{π}.

The relative contribution of d,π - and σ,π -conjugation to the total resonance effect in molecules Alk₃MR depends on the type of metal and group R_{π} as well as on the value of the negative effective charge on R_{π} . A strong change in this charge (caused by specific solvation, ionization, and chemical reactions) results in inversion of the donor-acceptor properties of substituents Alk₁M.⁸ Therefore, one fails to define a universal (invariant with respect to both the type and the charge of R_{π}) scale of the resonance parameters quantitatively characterizing the conjugation between Alk₃M and R_{π} fragments, even for fixed substituents Alk₃M (for instance, Me₃Si, Et₃Sn, and the like). Resonance parameters σ_R^0 as a measure of R'3M conjugation (R' are organic groups) with R_{π} in the individual molecules R'₃MR_x, whose electronic structure is not perturbed by interaction with the medium, have only been systematically investigated for $R_{\pi} = Ph.^{1.3}$

In this work, the conjugation effects in compounds $Me_3SiC\equiv CR$ (R are various organic groups) were studied by IR spectroscopy, and the σ_R^0 parameters, characterizing the resonance interactions between the Me_3Si substituent and the indicator center $C\equiv CR$, were determined. Carbon tetrachloride, which weakly solvates the Si atom⁹ as well as the indicator center (according to the data for compounds $HC\equiv CR$ and $Me_3CC\equiv CR$). 10,11 was used as a solvent.

Experimental

The studied compounds were synthesized according to previously published procedures. ^{12,13} The purity of the compounds was monitored by GLC. Freshly distilled CCl₄ of spectroscopic grade in the UV and IR spectral regions was used as the solvent.

The IR spectra of solutions of the compounds under study (0.08–0.30 mol L^{-1}) in CCI₄ were recorded on an UR-20 spectrophotometer in the region from 2000 to 2300 cm⁻¹. The values of the integrated extinction coefficients (A) of the C=C stretching bands were determined following a previously described procedure¹⁴ and expressed in IUPAC practical units (L mol⁻¹ cm⁻²).^{10,11}

The data were processed by the least squares method using the standard STATGRAPHICS 3.0 program package on an IBM PC AT personal computer.

The previously determined 10,11 values of the $\sigma_R^{\ 0}$ constants of organic substituents as well as those we calculated following the procedure described in Refs. 10 and 11 were used.

Results and Discussion

It is known¹⁵ that integrated extinction coefficient A is proportional to the squared derivative of the dipole moment (μ) of the molecule with respect to the ith normal coordinate (Q_i) .

$$A \sim (\partial \mu / \partial Q_i)_0^2 \tag{1}$$

If vibration of a certain bond A-B in a polyatomic molecule is characterized by its eigenvector, then expression (1) transforms to

$$A - (\partial \mu_{A-B}/\partial q_{A-B})_0^2, \tag{2}$$

where μ_{A-B} is the dipole moment of the A-B bond, and q_{A-B} is the stretching coordinate of the bond. Since the stretching vibration of the A-B bond is characterized by its eigenvector, this bond can be considered to a good approximation as a diatomic molecule A-B, for which (according to the published data¹⁵)

$$\partial \mu_{A-B}/\partial q_{A-B} = \mu_{A-B}/r_0, \tag{3}$$

where r_0 is the interatomic distance A-B. Thus,

$$A^{1/2} \sim \mu_{A-B}$$
 (4)

It follows from relation (4) that the reason for the change in extinction coefficient A of well-localized vibrations of the A-B bond is the electronic effects of molecular fragments, leading to a change in the dipole moment μ_{A-B} .

Three approaches based on relation (4) were used to study conjugation of Me_3Si and R substituents with the π -system in compounds $Me_3SiC \equiv CR$. The first one is

based on a comparison between the values of $A^{1/2}$ and those of Δv_R (Table 1) considering them as independent characteristics of the resonance interactions in Me₃SiC=CR molecules. A linear dependence was established

$$A^{1/2} = -1.10\Delta v_{R} - 22.0, \tag{5}$$

$$S_a = 0.12$$
, $S_b = 3.1$, $S_y = 8.0$, $r = 0.953$, $n = 11$.

Equation (5) relates the $A^{1/2}$ values to the Δv_R values, characterizing the conjugation effects of Me₃Si and R substituents with the triple bond not in the isolated Me₃SiC=CR molecules, but in their H-complexes with phenol. ¹⁶ Since a small positive charge δ^+ (0.01 e) is induced on the triple bond in H-complexation, the degree of conjugation in the molecules and in their H-complexes can be somewhat different. The Δv_R parameters were systematically studied for a series of benzene, ²¹ ethylene, ⁴ thiophene, ²² furan, ²³ and acetylene ¹⁶ derivatives. It was shown that the following relation is valid for each of the series of the above H-complexes

$$\Delta v = a\Sigma \sigma_1 + b\Sigma \sigma_R + c, \qquad (6)$$

where Δv is the shift of the phenol v(OH) frequency in the IR spectrum due to formation of a H-complex between phenol and the π -base; $\Sigma \sigma_1$ and $\Sigma \sigma_R$ are the sums of the inductive and the resonance constants of substituents at the π -donor center, bearing the charge δ^+ , respectively. The numerical values of coefficients a, b, and c depend on the type of the π -base (benzene, acetylene derivatives, etc.). In a number of publications, the $b\Sigma \sigma_R$ value is denoted as Δv_R , $^{4,16,21-23}$ and it was also shown that the

Table 1. Integrated extinction coefficients A, values of Δv_R , and σ_R^0 constants of substituents R for compounds Me₃SiC=CR

Com- pound	R	/L mol ⁻¹ cm ⁻²	$-A^{1/2}$ /L ^{1/2} mol ^{-1/2} cm ⁻¹	Δν _R /cm ⁺¹	σ _R ⁰
1	CH ₂ SnBu ^t ₃	4150	64.4	+44	-0.22
2	CH2GeMe3	4060	63.7	+38	-0.18
3	CH ₂ SiMe ₃	4290	65.5	+35	-0.18
4	Bu¹₁	1590	39.9	+19	-0.13
5	SC ₆ F̃ ₅	2600	51.0		-0.12
6	CH_2Ph	2630	51.3	+19	-0.11
7	Ρĥ	2700	52.0	+16	-0.10
8	CH2C6F5	1700	41.2	+21	-0.08
9	CH ₂ SPh	1290	35.9	+24	-0.08
10	CH ₂ OMe	820	28.6	+7	-0.07
11	CH ₂ SC ₆ F ₅	1100	33.2		-0.02
12	Č ₆ F ₅	640	25.4	-4	-0.01
13	CHÓ	490	-22.1	-34	+0.24

Note. The value of A for compound 4 was taken from Ref. 11. The values of Δv_R were calculated following the previously described procedure; ¹⁶ the appropriate values of σ_R were taken from Refs. 16–18. The values of σ_R^0 for substituents R in molecules 1–3 were taken from Ref. 19, those in molecules 5–9, 11, and 12 we obtained following the previously described procedure; ¹⁰ the average value of two values (one taken from Ref. 10 and the other we measured) is given for compound 10; the values of σ_R^0 for compounds 4 and 13 were taken from Refs. 10, 20.

 π -electron-donor ability Δv , as well as its resonance component Δv_R , only depend on the electronic effects of the substituents bound to the π -donor center in accordance with Eq. (6). This conclusion and the satisfactory correlation coefficient of Eq. (5) point to the fact that the electronic effects of the substituents predominantly affect the values of integrated extinction coefficients A in compounds Me₃SiC=CR.

The second approach (more rigorous than the first one) to the analysis of conjugation of substituents (Me₃Si and R) with the π-system in Me₃SiC≡CR molecules is based on the results of normal coordinate analy $sis^{10,11,15,24-26}$ of the stretching vibrations v(C=C) in the IR spectra of acetylene derivatives. According to these data, a change in the C≡C bond length corresponds in the main to v(C = C) stretch (whereas the mass of the substituents has no effect on v(C≡C)) for any monosubstituted derivatives HC≡CR and Me3CC≡CR. Insignificant and virtually equal mixing of the v(C=C) stretching vibration with the v(CC=) and v(SiC=) vibrations was established by the example of Me₃CC=CH and Me₃SiC=CH. This mixing results in a small and approximately equal decrease in the degree of localization of the normal vibration v(C=C) for both compounds. 24-26 At the same time, the degree of localization of v(C=C) remains reasonably high, which is in particular confirmed by the existence of the relations 10,11

$$A^{1/2} = 217(\sigma_R^0 + 0.05), r = 0.992$$
 (7)

for 18 compounds HC=CR and

$$A^{1/2} = 213[\sigma_R^0 - \sigma_R^0(Bu^t) + 0.05], r = 0.995$$
 (8)

for 17 compounds $Me_3CC \equiv CR$, where σ_R^0 are the resonance constants of substituents R.

The high values of the correlation coefficients in Eqs. (7) and (8) point to the fact that the values of $A^{1/2}$ in the series HC=CR and Me₃CC=CR only change due to the resonance interactions between the substituents and the triple bond.

Two peculiarities of relations (7) and (8) should be emphasized. On the one hand, since $\sigma_R^0 = 0$ for the unsubstituted acetylene, the value of A must also be zero. However, because of the different eigenvectors of the v(C=C) normal vibration in HC=CH and HC=CR molecules (see Ref. 10), the line corresponding to Eq. (7) does not pass through the origin. On the other hand, Eq. (8) only differs from Eq. (7) in the constant $(\sigma_R^0(Bu^t) = 0.13)$, which is consistent with a nearly equal degree of localization of v(C=C) for compounds HC=CR and Me₃CC=CR.

On the basis of the above data on the degree of localization of the $\nu(C=C)$ vibration, dependences of type (7) and (8) can be expected to exist for compounds $Me_3SiC=CR$.

It is convenient to express Eqs. (7) and (8) in the form of dependences (9) and (10), respectively.

$$A^{1/2} = 217\sigma_{\mathbf{R}}^{0} + 10.8 \tag{9}$$

$$A^{1/2} = 213\sigma_R^0 + 38.3 \tag{10}$$

For compounds Me₃SiC=CR (see Table 1), the following relation is valid:

$$A^{1/2} = 197\sigma_{R}^{0} - 24.7.$$

$$S_{a} = 15, S_{b} = 2.1, S_{v} = 6.0, r = 0.969, n = 13.$$
(11)

To calculate the σ_R^0 values of substituents R in some silylacetylenes Me₃SiC \equiv CR (see Table 1, compounds 5—12), we measured the A values for compounds HC \equiv CR containing the same groups R. The σ_R^0 values were calculated using Eq. (7). The values of A/L mol⁻¹ cm⁻² for compounds HC \equiv CR are listed below.

R
$$CH_2Ph Ph CH_2C_6F_5 CH_2SPh CH_2OMc CH_2SC_6F_5 C_6F_5$$

A 150 180 40 40 90 35 70

The value of σ_R^0 for substituent SC_6F_5 was calculated by Eq. (8) using the value of A (130 L mol⁻¹ cm⁻²) for $Me_1CC \equiv CSC_6F_5$.

Comparing relations (9), (10), and (11), we can draw the following conclusions. The integrated extinction coefficient A of the v(C=C) bands in the IR spectra in the series of compounds HC=CR, $Me_3CC=CR$, and $Me_3SiC=CR$ almost entirely depends on the conjugation of the substituents with the π -system.

As to their resonance properties, the Me₃C and Me₃Si groups are the +M-donor and the -M-acceptor, respectively. This unambiguously follows from the shift of line 2 in Fig. 1 toward smaller σ_R^0 values and that of line 3 toward larger σ_R^0 values with respect to line 1 (see Fig. 1).

The average value of the shift between lines 3 and 1 along the σ_R^0 axis in the region of the change in $A^{1/2}$ from -65 to +22 (see Table 1) is 0.17 ± 0.02 ; it is the value of the σ_R^0 parameter of the Me₃Si substituent in the isolated molecules Me₃SiC \equiv CR. The positive sign of σ_R^0 points to the fact that $d_1\pi$ -conjugation dominates over $\sigma_1\pi$ -conjugation in these molecules.

A limited number of the studied compounds Me₃SiC=CR hampers (due to inadequate sample size and/or the possible effect of direct polar conjugation) detection of second-order effects, resulting in a difference between the slope of Eq. (9) and that of Eq. (11).

The third approach we used is based on the direct justification test of Eq. (4) using the $A^{1/2}$ values for compounds Me₃SiC=CR and the values proportional to the π -components of the dipole moments of C=C bonds.

As is known.²⁷ the electric dipole moment μ is the product of the charge (q) and the distance (l) between the center of gravity of the positive charge and the negative charge. If only the π -component of the dipole moment (μ_{π}) is considered, then

$$\mu_{\pi} = q_{\pi}l, \tag{12}$$

where q_{π} are the effective π -electron charges on the atoms of a given bond. Previously in this work for three series of acetylene derivatives (HC=CR, Me₃CC=CR, and Me₃SiC=CR), the conclusions were drawn that the ν (C=C) vibration is a well-localized vibration and the

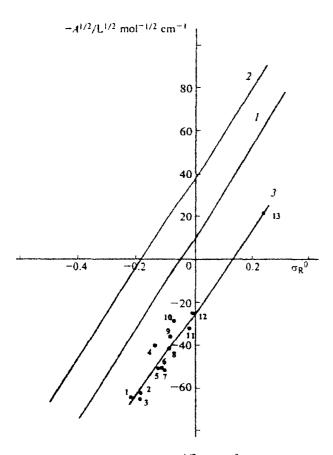


Fig. 1. Correlation between the $A^{1/2}$ and σ_R^0 values for compounds HC=CR (1), Me₃CC=CR (2), and Me₃SiC=CR (3). The numbering of the points on line 3 corresponds to that of the compounds in Table 1.

value of the integrated extinction coefficient A of the v(C = C) band in the 1R spectrum is predominantly affected by the resonance interactions between the substituents and the triple bond. If these conclusions are true and the length of the C = C bond (1) is kept constant at least for each of the series, then it follows from relations (4) and (12) that

$$A^{1/2} \sim q_{\pi}(\mathbb{C} \cong \mathbb{C}), \tag{13}$$

where $q_{\pi}(C = C)$ are the effective π -electron charges on the atoms of the C = C bond.

To verify relation (13), the Δq_{π} values for compounds HC \equiv CR (R = NH₂, OMe, OH, F, Me, CH=CH₂, CF₃, CN, COH, COMe, NO₂, and NO)²⁸ were taken as the q_{π} (C \equiv C) values. The Δq_{π} values, calculated by non-empirical quantum-chemical methods in the 4-31G basis set,²⁸ quantitatively characterize the π -electron exchange between substituent R and the triple bond in HC \equiv CR molecules, *i.e.*, that part of the change in the effective charge on the carbon atoms of the triple bond which is due to the conjugation effect between the R groups and the π -system (Table 2).

Table 2. Values of $A^{1/2}$ and Δq_x for compounds HC=CR, Me₃CC=CR, and Me₃SiC=CR

R		∆q _x /e		
	HC∍CR	Me ₃ CC=CR	Me3SiC=CR	
NH ₂	-91.2	-61.8	-117.3	-0.117
OMe	-82.5	-53.3	-109.4	-0.089
ОН	-76.0	-46.9	-103.5	-0.087
F	-63.0	-34.1	-91.7	-0.062
Me	-10.9	+17.0	-44.4	-0.012
CH=CH ₂	0	+27.6	-34.6	-0.010
Н	+10.8	+38.3	-24.7	0
CF ₃	+32.5	+59.6	-5.0	+0.005
CN	+30.3	+57.5	-7.0	+0.021
COH	+62.9	+89.4	+22.6	+0.042
COMe	+58.5	+85.2	+18.6	+0.043
NO_2	+47.7	+74.5	+8.8	+0.061
NO T	+65.0	+91.6	+24.6	+0.077

Note. The values of $A^{1/2}$ were calculated by Eqs. (9), (10), and (11) using the values of σ_R^{0} for the substituents taken from Refs. 10, 20. The values of Δq_{π} were taken from Ref. 28. The negative (positive) values of Δq_{π} correspond to an increase (decrease) in the π -electron transfer from substituent R to the triple bond as compared to that for acetylene.

The values $A^{1/2}$ and Δq_x are related by a linear dependence (Fig. 2), which is described by the following equations:

$$A^{1/2} = 930\Delta q_x + 7.9,$$
 (14)
 $S_a = 52, S_b = 3.1, S_y = 11.1, r = 0.983, n = 13$

for compounds HC=CR,

$$A^{1/2} = 913\Delta q_x + 35.5,$$
 (15)
 $S_a = 51, S_b = 3.1, S_y = 10.9, r = 0.983, n = 13$

for compounds Me₃CC≅CR, and

$$A^{1/2} = 845\Delta q_x - 27.3,$$
 (16)
 $S_a = 47, S_b = 2.8, S_y = 10.1, r = 0.983, n = 13$

for compounds Me₃SiC=CR.

Lines l and l in Fig. 2 are almost parallel. Line l is shifted toward smaller l and l values by -0.031 ± 0.002 l with respect to line l. π -Electron transfer from the substituents to the π -system increases by that value on going from HC \equiv CR to Me $_{\rm 3}$ CC \equiv CR, which can be explained by the approximately constant (i.e., independent of the R type) resonance contribution (the +M-effect) of the l-err-butyl fragment.

The difference between the slope of Eq. (14) and that of Eq. (16) is due to the same causes considered above in discussing Fig. 1 and Eqs. (9) and (11). At the same time, the shift along the Δq_{π} axis between line 1 and line 3 in Fig. 2 varies within relatively narrow limits, from ~0.029 e (for $A^{1/2} = -115$, the case of typical resonance donors R in Me₃SiC=CR) to ~0.043 e

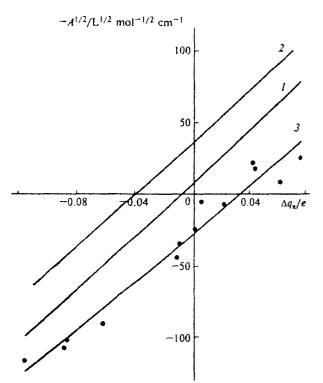


Fig. 2. Correlation between $A^{1/2}$ and Δq_x values for compounds HC=CR (1), Me₃CC=CR (2), and Me₃SiC=CR (3).

(for $A^{1/2} = +25$, the case of typical resonance acceptors R), in the studied range of the change in the $A^{1/2}$ values. The average value of the shift $(+0.036\pm0.007\ e)$ is the value of π -electron transfer from the triple bond to the Me₃Si substituent in isolated Me₃SiC=CR molecules.

The spectral investigations were carried out at the Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences with the financial support of the Russian Foundation for Basic Research (Project No. 95-03-10729g).

References

- A. N. Egorochkin, Usp. Khim., 1992, 61, 1092 [Russ. Chem. Rev., 1992, 61 (Engl. Transl.)].
- 2. A. N. Egorochkin, G. A. Razuvaev, and M. A. Lopatin, J. Organomer. Chem., 1988, 344, 49.
- A. N. Egorochkin and G. A. Razuvaev, Usp. Khim., 1987,
 1480 [Russ. Chem. Rev., 1987, 56, 846 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, and V. L. Tsvetkova, Izv. Akad. Nauk, Ser. Khim., 1993, 1383 [Russ. Chem. Bull., 1993, 42, 1316 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, V. L. Tsvetkova, E. T. Bogoradovsky, and V. S. Zavgorodny, Metalloorg. Khim., 1991, 4, 362 [Organomet. Chem. USSR, 1991, 4, 171 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, E. T. Bogoradovsky, and T. P. Zubova, Izv. Akad. Nauk, Ser. Khim., 1994, 1041 [Russ. Chem. Bull., 1994, 43, 976 (Engl. Transl.)].

- 7. C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell Univ. Press, Ithaca, 1969, Ch. 2.
- 8. A. N. Egorochkin and S. E. Skobeleva, in Tez. dokl. VI Vseros. konf. po metalloorganicheskoi khimii [Abstracts VIth All-Russian Conf. on Organometallic Chemistry], Nizhnii Novgorod, 1995, 257 (in Russian).
- S. Ya. Khorshev, V. L. Tsvetkova, and A. N. Egorochkin, J. Organomet. Chem., 1984, 264, 169.
- T. B. Grindley, K. F. Johnson, A. R. Katritzky, H. J. Keogh, C. Thirkettle, R. T. C. Brownlee, J. A. Munday, and R. D. Topsom, J. Chem. Soc., Perkin Trans. 2, 1974, 276.
- T. B. Grindley, K. F. Johnson, A. R. Katritzky, H. J. Keogh, C. Thirkettle, and R. D. Topsom, J. Chem. Soc., Perkin Trans. 2, 1974, 282.
- 12. Chemistry of Acetylenes, Ed. H. G. Viehe, M. Dekker, New York, 1969.
- V. Jager, M. Murray, U. Niedballa, and H. G. Viehe, Methoden der organischen Chemie (Houben-Weil), Ed. E. Muller, Georg Thieme Verlag, Stuttgart, 1977, 5/2a.
- R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Am. Chem. Soc., 1966, 88, 1413.
- M. V. Vol'kenshtein, L. A. Gribov, M. A. El'yashevich, and B. I. Stepanov, Kolebaniya molekul [Molecular Vibrations], Nauka, Moscow, 1972 (in Russian).
- A. N. Egorochkin, S. E. Skobeleva, V. L. Tsvetkova, E. T. Bogoradovsky, and V. S. Zavgorodny, Metalloorg. Khim., 1992, 5, 818 [Organomet. Chem. USSR, 1992, 5, 394 (Engl. Transl.)].
- O. Exner, in Correlation Analysis in Chemistry. Recent Advances, Eds. A. Chapman and J. Shorter, Plenum Press, New York, 1978, 439.
- C. Hansch, A. Leo, and R. W. Taft, Chem. Rev., 1991, 91, 165.
- A. N. Egorochkin, S. E. Skobeleva, V. L. Tsvetkova, E. T. Bogoradovsky, and V. S. Zavgorodny, *Metalloorg. Khim.*, 1991, 4, 992 [Organomet. Chem. USSR, 1991, 4, 483 (Engl. Transl.)].
- A. R. Katritzky and R. D. Topsom, Chem. Rev., 1977, 77, 639.
- A. N. Egorochkin, S. E. Skobeleva, and V. L. Tsvetkova, Metalloorg. Khim., 1993, 6, 131 [Organomet. Chem. USSR, 1993, 6 (Engl. Transl.)].
- A. N. Egorochkin and S. E. Skobeleva, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 2163 [Russ. Chem. Bull., 1994, 43, 2043 (Engl. Transl.)].
- A. N. Egorochkin, S. E. Skobeleva, and T. G. Mushtina, Izv. Akad. Nauk, Ser. Khim., 1995, 289 [Russ. Chem. Bull., 1995, 44, 280 (Engl. Transt.)].
- A. V. Belyakov, V. S. Nikitin, and M. V. Polyakova, Zh. Obshch. Khim., 1995, 65, 81 [Russ. J. Gen. Chem., 1995, 65 (Engl. Transl.)].
- V. S. Nikitin, M. V. Polyakova, A. V. Belyakov, E. T. Bogoradovsky, and V. S. Zavgorodny, Zh. Fiz. Khim., 1993, 67, 979 [Russ. J. Phys. Chem., 1993, 67 (Engl. Transl.)].
- V. S. Nikitin, M. V. Polyakova, I. I. Baburina, A. V. Belyakov, E. T. Bogoradovsky, and V. S. Zavgorodny, Spectrochim. Acta A, 1990, 46, 1669.
- 27. V. I. Minkin, O. A. Osipov, and Yu. A. Zhdanov, Dipol'nye momenty v organicheskoi khimii [Dipole Moments in Organic Chemistry], Khimiya, Leningrad, 1968 (in Russian).
- S. Marriott and R. D. Topsom, J. Mol. Struct., 1984, 106, 277.

Received April 10, 1996; in revised form July 4, 1996